Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiplicity of Solutions for Singular Semilinear Elliptic Equations with Critical Hardy-sobolev Exponents

where Ω ⊂ R(N ≥ 4) is an open bounded domain with smooth boundary, β > 0, 0 ∈ Ω, 0 ≤ s < 2, 2∗(s) := 2(N − s) N − 2 is the critical Hardy-Sobolev exponent and, when s = 0, 2∗(0) = 2N N − 2 is the critical Sobolev exponent, 0 ≤ μ < μ := (N − 2) 4 . In [1] A. Ferrero and F. Gazzola investigated the existence of nontrivial solutions for problem (1.1) with β = 1, s = 0. In [2] D. S. Kang and S. J. ...

متن کامل

Results on Positive Solutions of Elliptic Equations with a Critical Hardy-sobolev Operator

‖u‖ L pN N−p (RN ) ≤ C(N, p)‖u‖D1,p(RN ). Thus we use D loc(R N ) to denote those functions u which satisfy, on all compact subsets K of R , u ∈ L 2N N−2 (K) and ∇u ∈ L2(K). It is the same asH1 loc(R ), another standard notation which denotes the set of functions u satisfying u,∇u ∈ L2(K) for all compact subsets K of R . A D loc(R N ) solution of (1.1) is in L∞loc. This can be proved by argumen...

متن کامل

Multiple Positive Solutions for Degenerate Elliptic Equations with Critical Cone Sobolev Exponents on Singular Manifolds

In this article, we show the existence of multiple positive solutions to a class of degenerate elliptic equations involving critical cone Sobolev exponent and sign-changing weight function on singular manifolds with the help of category theory and the Nehari manifold method.

متن کامل

Existence of solutions for elliptic systems with critical Sobolev exponent ∗

We establish conditions for existence and for nonexistence of nontrivial solutions to an elliptic system of partial differential equations. This system is of gradient type and has a nonlinearity with critical growth.

متن کامل

Existence of Multiple Solutions for a Singular Elliptic Problem with Critical Sobolev Exponent

and Applied Analysis 3 The following Hardy-Sobolev inequality is due to Caffarelli et al. 12 , which is called Caffarelli-Kohn-Nirenberg inequality. There exist constants S1, S2 > 0 such that (∫ RN |x|−bp |u|pdx )p/p∗ ≤ S1 ∫ RN |x|−ap|∇u|pdx, ∀u ∈ C∞ 0 ( R N ) , 1.8 ∫ RN |x|− a 1 |u|dx ≤ S2 ∫ RN |x|−ap|∇u|pdx, ∀u ∈ C∞ 0 ( R N ) , 1.9 where p∗ Np/ N − pd is called the Sobolev critical exponent. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications on Pure and Applied Analysis

سال: 2010

ISSN: 1534-0392

DOI: 10.3934/cpaa.2011.10.527